JFIFXX    $.' ",#(7),01444'9=82<.342  2!!22222222222222222222222222222222222222222222222222"4 ,PG"Z_4˷kjزZ,F+_z,© zh6٨icfu#ډb_N?wQ5-~I8TK<5oIv-k_U_~bMdӜUHh?]EwQk{_}qFW7HTՑYF?_'ϔ_Ջt=||I 6έ"D/[k9Y8ds|\Ҿp6Ҵ].6znopM[mei$[soᘨ˸ nɜG-ĨUycP3.DBli;hjx7Z^NhN3u{:jx힞#M&jL P@_ P&o89@Sz6t7#Oߋ s}YfTlmrZ)'Nk۞pw\Tȯ?8`Oi{wﭹW[r Q4F׊3m&L=h3z~#\l :F,j@ ʱwQT8"kJO6֚l}R>ډK]y&p}b;N1mr$|7>e@BTM*-iHgD) Em|ؘbҗaҾt4oG*oCNrPQ@z,|?W[0:n,jWiEW$~/hp\?{(0+Y8rΟ+>S-SVN;}s?. w9˟<Mq4Wv'{)01mBVW[8/< %wT^5b)iM pgN&ݝVO~qu9 !J27$O-! :%H ـyΠM=t{!S oK8txA& j0 vF Y|y ~6@c1vOpIg4lODL Rcj_uX63?nkWyf;^*B @~a`Eu+6L.ü>}y}_O6͐:YrGXkGl^w~㒶syIu! W XN7BVO!X2wvGRfT#t/?%8^WaTGcLMI(J1~8?aT ]ASE(*E} 2#I/׍qz^t̔bYz4xt){ OH+(EA&NXTo"XC')}Jzp ~5}^+6wcQ|LpdH}(.|kc4^"Z?ȕ a<L!039C EuCFEwç ;n?*oB8bʝ'#RqfM}7]s2tcS{\icTx;\7KPʇ Z O-~c>"?PEO8@8GQgaՎ󁶠䧘_%#r>1zaebqcPѵn#L =׀t L7`VA{C:ge@w1 Xp3c3ġpM"'-@n4fGB3DJ8[JoߐgK)ƛ$ 83+ 6ʻ SkI*KZlT _`?KQKdB`s}>`*>,*@JdoF*弝O}ks]yߘc1GV<=776qPTtXԀ!9*44Tހ3XΛex46YD  BdemDa\_l,G/֌7Y](xTt^%GE4}bTڹ;Y)BQu>J/J ⮶.XԄjݳ+Ed r5_D1 o Bx΢#<W8R6@gM. drD>(otU@x=~v2 ӣdoBd3eO6㣷ݜ66YQz`S{\P~z m5{J/L1xO\ZFu>ck#&:`$ai>2ΔloF[hlEܺΠk:)` $[69kOw\|8}ބ:񶐕IA1/=2[,!.}gN#ub ~݊}34qdELc$"[qU硬g^%B zrpJru%v\h1Yne`ǥ:gpQM~^Xi `S:V29.PV?Bk AEvw%_9CQwKekPؠ\;Io d{ ߞoc1eP\ `E=@KIRYK2NPlLɀ)&eB+ь( JTx_?EZ }@ 6U뙢طzdWIn` D噥[uV"G&Ú2g}&m?ċ"Om# {ON"SXNeysQ@FnVgdX~nj]J58up~.`r\O,ư0oS _Ml4kv\JSdxSW<AeIX$Iw:Sy›R9Q[,5;@]%u@ *rolbI  +%m:͇ZVủθau,RW33 dJeTYE.Mϧ-oj3+yy^cVO9NV\nd1 !͕_)av;թMlWR1)ElP;yوÏu 3k5Pr6<⒲l!˞*u־n!l:UNW %Chx8vL'X@*)̮ˍ D-M+JUkvK+x8cY?Ԡ~3mo|u@[XeYC\Kpx8oCC&N~3-H MXsu<`~"WL$8ξ3a)|:@m\^`@ҷ)5p+6p%i)P Mngc#0AruzRL+xSS?ʮ}()#tmˇ!0}}y$6Lt;$ʳ{^6{v6ķܰgVcnn ~zx«,2u?cE+ȘH؎%Za)X>uWTzNyosFQƤ$*&LLXL)1" LeOɟ9=:tZcŽY?ӭVwv~,Yrۗ|yGaFC.+ v1fήJ]STBn5sW}y$~z'c 8  ,! pVNSNNqy8z˱A4*'2n<s^ǧ˭PJޮɏUGLJ*#i}K%,)[z21z ?Nin1?TIR#m-1lA`fT5+ܐcq՝ʐ,3f2Uեmab#ŠdQy>\)SLYw#.ʑf ,"+w~N'cO3FN<)j&,- љ֊_zSTǦw>?nU仆Ve0$CdrP m׈eXmVu L.bֹ [Դaզ*\y8Է:Ez\0KqC b̘cөQ=0YsNS.3.Oo:#v7[#߫ 5܎LEr49nCOWlG^0k%;YߝZǓ:S#|}y,/kLd TA(AI$+I3;Y*Z}|ӧOdv..#:nf>>ȶITX 8y"dR|)0=n46ⲑ+ra ~]R̲c?6(q;5% |uj~z8R=XIV=|{vGj\gcqz؋%Mߍ1y#@f^^>N#x#۹6Y~?dfPO{P4Vu1E1J *|%JN`eWuzk M6q t[ gGvWIGu_ft5j"Y:Tɐ*; e54q$C2d} _SL#mYpO.C;cHi#֩%+) ӍƲVSYźg |tj38r|V1#;.SQA[S#`n+$$I P\[@s(EDzP])8G#0B[ىXIIq<9~[Z멜Z⊔IWU&A>P~#dp]9 "cP Md?٥Ifتuk/F9c*9Ǎ:ØFzn*@|Iށ9N3{'['ͬҲ4#}!V Fu,,mTIkv C7vB6kT91*l '~ƞFlU'M ][ΩũJ_{iIn$L jOdxkza۪#EClx˘oVɞljr)/,߬hL#^Lф,íMƁe̩NBLiLq}(q6IçJ$WE$:=#(KBzђ xlx?>Պ+>W,Ly!_DŌlQ![ SJ1ƐY}b,+Loxɓ)=yoh@꥟/Iѭ=Py9 ۍYӘe+pJnϱ?V\SO%(t =?MR[Șd/ nlB7j !;ӥ/[-A>dNsLj ,ɪv=1c.SQO3UƀܽE̻9GϷD7(}Ävӌ\y_0[w <΍>a_[0+LF.޺f>oNTq;y\bՃyjH<|q-eɏ_?_9+PHp$[uxK wMwNی'$Y2=qKBP~Yul:[<F12O5=d]Ysw:ϮEj,_QXz`H1,#II dwrP˂@ZJVy$\y{}^~[:NߌUOdؾe${p>G3cĖlʌ ת[`ϱ-WdgIig2 }s ؤ(%#sS@~3XnRG~\jc3vӍLM[JBTs3}jNʖW;7ç?=XF=-=qߚ#='c7ڑWI(O+=:uxqe2zi+kuGR0&eniT^J~\jyp'dtGsO39* b#Ɋ p[BwsT>d4ۧsnvnU_~,vƜJ1s QIz)(lv8MU=;56Gs#KMP=LvyGd}VwWBF'à ?MHUg2 !p7Qjڴ=ju JnA suMeƆҔ!)'8Ϣٔޝ(Vpצ֖d=ICJǠ{qkԭ߸i@Ku|p=..*+xz[Aqġ#s2aƊRR)*HRsi~a &fMP-KL@ZXy'x{}Zm+:)) IJ-iu ܒH'L(7yGӜq j 6ߌg1go,kرtY?W,pefOQS!K۟cҒA|սj>=⬒˧L[ ߿2JaB~Ru:Q] 0H~]7ƼI(}cq 'ήETq?fabӥvr )o-Q_'ᴎoK;Vo%~OK *bf:-ťIR`B5!RB@ï u ̯e\_U_ gES3QTaxU<~c?*#]MW,[8Oax]1bC|踤Plw5V%){t<d50iXSUm:Z┵i"1^B-PhJ&)O*DcWvM)}Pܗ-q\mmζZ-l@}aE6F@&Sg@ݚM ȹ 4#p\HdYDoH"\..RBHz_/5˘6KhJRPmƶim3,#ccoqa)*PtRmk7xDE\Y閣_X<~)c[[BP6YqS0%_;Àv~| VS؇ 'O0F0\U-d@7SJ*z3nyPOm~P3|Yʉr#CSN@ ƮRN)r"C:: #qbY. 6[2K2uǦHYRQMV G$Q+.>nNHq^ qmMVD+-#*U̒ p욳u:IBmPV@Or[b= 1UE_NmyKbNOU}the`|6֮P>\2PVIDiPO;9rmAHGWS]J*_G+kP2KaZH'KxWMZ%OYDRc+o?qGhmdSoh\D|:WUAQc yTq~^H/#pCZTI1ӏT4"ČZ}`w#*,ʹ 0i課Om*da^gJ݅{le9uF#Tֲ̲ٞC"qߍ ոޑo#XZTp@ o8(jdxw],f`~|,s^f1t|m򸄭/ctr5s79Q4H1꠲BB@l9@C+wpxu£Yc9?`@#omHs2)=2.ljg9$YS%*LRY7Z,*=䷘$armoϰUW.|rufIGwtZwo~5 YյhO+=8fF)W7L9lM̘·Y֘YLf큹pRF99.A "wz=E\Z'a 2Ǚ#;'}G*l^"q+2FQ hjkŦ${ޮ-T٭cf|3#~RJt$b(R(rdx >U b&9,>%E\ Άe$'q't*אެb-|dSBOO$R+H)܎K1m`;J2Y~9Og8=vqD`K[F)k[1m޼cn]skz$@)!I x՝"v9=ZA=`Ɠi :E)`7vI}dYI_ o:obo 3Q&D&2= Ά;>hy.*ⅥSӬ+q&j|UƧ}J0WW< ۋS)jQRjƯrN)Gű4Ѷ(S)Ǣ8iW52No˓ ۍ%5brOnL;n\G=^UdI8$&h'+(cȁ߫klS^cƗjԌEꭔgFȒ@}O*;evWVYJ\]X'5ղkFb 6Ro՜mi Ni>J?lPmU}>_Z&KKqrIDՉ~q3fL:Se>E-G{L6pe,8QIhaXaUA'ʂs+טIjP-y8ۈZ?J$WP Rs]|l(ԓsƊio(S0Y 8T97.WiLc~dxcE|2!XKƘਫ਼$((6~|d9u+qd^389Y6L.I?iIq9)O/뚅OXXVZF[یgQLK1RҖr@v#XlFНyS87kF!AsM^rkpjPDyS$Nqnxҍ!Uf!ehi2m`YI9r6 TFC}/y^Η5d'9A-J>{_l+`A['յϛ#w:݅%X}&PStQ"-\縵/$ƗhXb*yBS;Wջ_mcvt?2}1;qSdd~u:2k52R~z+|HE!)Ǟl7`0<,2*Hl-x^'_TVgZA'j ^2ΪN7t?w x1fIzC-ȖK^q;-WDvT78Z hK(P:Q- 8nZ܃e貾<1YT<,"6{/ ?͟|1:#gW>$dJdB=jf[%rE^il:BxSּ1հ,=*7 fcG#q eh?27,!7x6nLC4x},GeǝtC.vS F43zz\;QYC,6~;RYS/6|25vTimlv& nRh^ejRLGf? ۉҬܦƩ|Ȱ>3!viʯ>vオX3e_1zKȗ\qHS,EW[㺨uch⍸O}a>q6n6N6qN ! 1AQaq0@"2BRb#Pr3C`Scst$4D%Td ?Na3mCwxAmqmm$4n淿t'C"wzU=D\R+wp+YT&պ@ƃ3ޯ?AﶂaŘ@-Q=9Dռѻ@MVP܅G5fY6# ?0UQ,IX(6ڵ[DIMNލc&υj\XR|,4 jThAe^db#$]wOӪ1y%LYm뭛CUƃߜ}Cy1XνmF8jI]HۺиE@Ii;r8ӭVFՇ| &?3|xBMuSGe=Ӕ#BE5GY!z_eqр/W>|-Ci߇t1ޯќdR3ug=0 5[?#͏qcfH{ ?u=??ǯ}ZzhmΔBFTWPxs}G93 )gGR<>r h$'nchPBjJҧH -N1N?~}-q!=_2hcMlvY%UE@|vM2.Y[|y"EïKZF,ɯ?,q?vM 80jx";9vk+ ֧ ȺU?%vcVmA6Qg^MA}3nl QRNl8kkn'(M7m9وq%ޟ*h$Zk"$9: ?U8Sl,,|ɒxH(ѷGn/Q4PG%Ա8N! &7;eKM749R/%lc>x;>C:th?aKXbheᜋ^$Iհ hr7%F$EFdt5+(M6tÜUU|zW=aTsTgdqPQb'm1{|YXNb P~F^F:k6"j! Ir`1&-$Bevk:y#ywI0x=D4tUPZHڠ底taP6b>xaQ# WeFŮNjpJ* mQN*I-*ȩFg3 5Vʊɮa5FO@{NX?H]31Ri_uѕ 0 F~:60p͈SqX#a5>`o&+<2D: ڝ$nP*)N|yEjF5ټeihyZ >kbHavh-#!Po=@k̆IEN@}Ll?jO߭ʞQ|A07xwt!xfI2?Z<ץTcUj]陎Ltl }5ϓ$,Omˊ;@OjEj(ا,LXLOЦ90O .anA7j4 W_ٓzWjcBy՗+EM)dNg6y1_xp$Lv:9"zpʙ$^JԼ*ϭo=xLj6Ju82AH3$ٕ@=Vv]'qEz;I˼)=ɯx /W(Vp$ mu񶤑OqˎTr㠚xsrGCbypG1ߠw e8$⿄/M{*}W]˷.CK\ުx/$WPwr |i&}{X >$-l?-zglΆ(FhvS*b߲ڡn,|)mrH[a3ר[13o_U3TC$(=)0kgP u^=4 WYCҸ:vQרXàtkm,t*^,}D* "(I9R>``[~Q]#afi6l86:,ssN6j"A4IuQ6E,GnHzSHOuk5$I4ؤQ9@CwpBGv[]uOv0I4\yQѸ~>Z8Taqޣ;za/SI:ܫ_|>=Z8:SUIJ"IY8%b8H:QO6;7ISJҌAά3>cE+&jf$eC+z;V rʺmyeaQf&6ND.:NTvm<- uǝ\MvZYNNT-A>jr!SnO 13Ns%3D@`ܟ 1^c< aɽ̲Xë#w|ycW=9I*H8p^(4՗karOcWtO\ƍR8'KIQ?5>[}yUײ -h=% qThG2)"ו3]!kB*pFDlA,eEiHfPs5H:Փ~H0DتDIhF3c2E9H5zԑʚiX=:mxghd(v׊9iSOd@0ڽ:p5h-t&Xqӕ,ie|7A2O%PEhtjY1wЃ!  ࢽMy7\a@ţJ 4ȻF@o̒?4wx)]P~u57X 9^ܩU;Iꭆ 5 eK27({|Y׎ V\"Z1 Z}(Ǝ"1S_vE30>p; ΝD%xW?W?vo^Vidr[/&>~`9Why;R ;;ɮT?r$g1KACcKl:'3 cﳯ*"t8~l)m+U,z`(>yJ?h>]vЍG*{`;y]IT ;cNUfo¾h/$|NS1S"HVT4uhǜ]v;5͠x'C\SBplh}N ABx%ޭl/Twʽ]D=Kžr㻠l4SO?=k M: cCa#ha)ѐxcsgPiG{+xQI= zԫ+ 8"kñj=|c yCF/*9жh{ ?4o kmQNx;Y4膚aw?6>e]Qr:g,i"ԩA*M7qB?ӕFhV25r[7 Y }LR}*sg+xr2U=*'WSZDW]WǞ<叓{$9Ou4y90-1'*D`c^o?(9uݐ'PI& fJݮ:wSjfP1F:X H9dԯ˝[_54 }*;@ܨ ðynT?ןd#4rGͨH1|-#MrS3G3).᧏3vz֑r$G"`j 1tx0<ƆWh6y6,œGagAyb)hDß_mü gG;evݝnQ C-*oyaMI><]obD":GA-\%LT8c)+y76oQ#*{(F⽕y=rW\p۩cA^e6KʐcVf5$'->ՉN"F"UQ@fGb~#&M=8טJNu9D[̤so~ G9TtW^g5y$bY'سǴ=U-2 #MCt(i lj@Q 5̣i*OsxKf}\M{EV{υƇ);HIfeLȣr2>WIȂ6ik 5YOxȺ>Yf5'|H+98pjn.OyjY~iw'l;s2Y:'lgꥴ)o#'SaaKZ m}`169n"xI *+ }FP"l45'ZgE8?[X7(.Q-*ތL@̲v.5[=t\+CNܛ,gSQnH}*FG16&:t4ُ"Ạ$b |#rsaT ]ӽDP7ո0y)e$ٕvIh'QEAm*HRI=: 4牢) %_iNݧl] NtGHL ɱg<1V,J~ٹ"KQ 9HS9?@kr;we݁]I!{ @G["`J:n]{cAEVʆ#U96j#Ym\qe4hB7Cdv\MNgmAyQL4uLjj9#44tl^}LnR!t±]rh6ٍ>yҏNfU  Fm@8}/ujb9he:AyծwGpΧh5l}3p468)Udc;Us/֔YX1O2uqs`hwgr~{ RmhN؎*q 42*th>#E#HvOq}6e\,Wk#Xb>p}դ3T5†6[@Py*n|'f֧>lư΂̺SU'*qp_SM 'c6m ySʨ;MrƋmKxo,GmPAG:iw9}M(^V$ǒѽ9| aJSQarB;}ٻ֢2%Uc#gNaݕ'v[OY'3L3;,p]@S{lsX'cjwk'a.}}& dP*bK=ɍ!;3ngΊUߴmt'*{,=SzfD Ako~Gaoq_mi}#mPXhύmxǍ΂巿zfQc|kc?WY$_Lvl߶c`?ljݲˏ!V6UЂ(A4y)HpZ_x>eR$/`^'3qˏ-&Q=?CFVR DfV9{8gnh(P"6[D< E~0<@`G6Hгcc cK.5DdB`?XQ2ٿyqo&+1^ DW0ꊩG#QnL3c/x 11[yxპCWCcUĨ80me4.{muI=f0QRls9f9~fǨa"@8ȁQ#cicG$Gr/$W(WV"m7[mAmboD j۳ l^kh׽ # iXnveTka^Y4BNĕ0 !01@Q"2AaPq3BR?@4QT3,㺠W[=JKϞ2r^7vc:9 EߴwS#dIxu:Hp9E! V 2;73|F9Y*ʬFDu&y؟^EAA(ɩ^GV:ݜDy`Jr29ܾ㝉[E;FzxYGUeYC v-txIsםĘqEb+P\ :>iC';k|zرny]#ǿbQw(r|ӹs[D2v-%@;8<a[\o[ϧwI!*0krs)[J9^ʜp1) "/_>o<1AEy^C`x1'ܣnps`lfQ):lb>MejH^?kl3(z:1ŠK&?Q~{ٺhy/[V|6}KbXmn[-75q94dmc^h X5G-}دBޟ |rtMV+]c?-#ڛ^ǂ}LkrOu>-Dry D?:ޞUǜ7V?瓮"#rչģVR;n/_ ؉vݶe5db9/O009G5nWJpA*r9>1.[tsFnQ V 77R]ɫ8_0<՜IFu(v4Fk3E)N:yڮeP`1}$WSJSQNjٺ޵#lј(5=5lǏmoWv-1v,Wmn߀$x_DȬ0¤#QR[Vkzmw"9ZG7'[=Qj8R?zf\a=OU*oBA|G254 p.w7  &ξxGHp B%$gtЏ򤵍zHNuЯ-'40;_3 !01"@AQa2Pq#3BR?ʩcaen^8F<7;EA{EÖ1U/#d1an.1ě0ʾRh|RAo3m3 % 28Q yφHTo7lW>#i`qca m,B-j݋'mR1Ήt>Vps0IbIC.1Rea]H64B>o]($Bma!=?B KǾ+Ծ"nK*+[T#{EJSQs5:U\wĐf3܆&)IԆwE TlrTf6Q|Rh:[K zc֧GC%\_a84HcObiؖV7H )*ģK~Xhչ04?0 E<}3#u? |gS6ꊤ|I#Hڛ աwX97Ŀ%SLy6č|Fa 8b$sקhb9RAu7˨pČ_\*w묦F 4D~f|("mNKiS>$d7SlA/²SL|6N}S˯g]6; #. 403WebShell
403Webshell
Server IP : 51.79.149.130  /  Your IP : 216.73.216.210
Web Server : LiteSpeed
System : Linux linux.firevps.net 5.4.0-216-generic #236-Ubuntu SMP Fri Apr 11 19:53:21 UTC 2025 x86_64
User : digit4868 ( 1088)
PHP Version : 8.2.30
Disable Function : NONE
MySQL : OFF  |  cURL : ON  |  WGET : ON  |  Perl : ON  |  Python : ON  |  Sudo : ON  |  Pkexec : ON
Directory :  /lib/python2.7/

Upload File :
current_dir [ Writeable ] document_root [ Writeable ]

 

Command :


[ Back ]     

Current File : /lib/python2.7/heapq.pyc
�
xFWgc
@s�dZdZdddddddd	gZd
dlmZmZmZmZmZm	Z	d
dl
mZd
�Zd�Z
d�Zd�Zd�Zd�Zd�Zd�Zd�Zd�Zd�Zd�Zd�Zd�Zyd
dlTWnek
rnXd�ZeZd*d�ZeZd*d�Ze dkr�gZ!d d!d"d#d$d%d&d'd(d)g
Z"xe"D]Z#e
e!e#�qrWgZ$xe!r�e$j%ee!��q�We$GHd
d*l&Z&e&j'�nd*S(+s�Heap queue algorithm (a.k.a. priority queue).

Heaps are arrays for which a[k] <= a[2*k+1] and a[k] <= a[2*k+2] for
all k, counting elements from 0.  For the sake of comparison,
non-existing elements are considered to be infinite.  The interesting
property of a heap is that a[0] is always its smallest element.

Usage:

heap = []            # creates an empty heap
heappush(heap, item) # pushes a new item on the heap
item = heappop(heap) # pops the smallest item from the heap
item = heap[0]       # smallest item on the heap without popping it
heapify(x)           # transforms list into a heap, in-place, in linear time
item = heapreplace(heap, item) # pops and returns smallest item, and adds
                               # new item; the heap size is unchanged

Our API differs from textbook heap algorithms as follows:

- We use 0-based indexing.  This makes the relationship between the
  index for a node and the indexes for its children slightly less
  obvious, but is more suitable since Python uses 0-based indexing.

- Our heappop() method returns the smallest item, not the largest.

These two make it possible to view the heap as a regular Python list
without surprises: heap[0] is the smallest item, and heap.sort()
maintains the heap invariant!
snHeap queues

[explanation by Fran�ois Pinard]

Heaps are arrays for which a[k] <= a[2*k+1] and a[k] <= a[2*k+2] for
all k, counting elements from 0.  For the sake of comparison,
non-existing elements are considered to be infinite.  The interesting
property of a heap is that a[0] is always its smallest element.

The strange invariant above is meant to be an efficient memory
representation for a tournament.  The numbers below are `k', not a[k]:

                                   0

                  1                                 2

          3               4                5               6

      7       8       9       10      11      12      13      14

    15 16   17 18   19 20   21 22   23 24   25 26   27 28   29 30


In the tree above, each cell `k' is topping `2*k+1' and `2*k+2'.  In
a usual binary tournament we see in sports, each cell is the winner
over the two cells it tops, and we can trace the winner down the tree
to see all opponents s/he had.  However, in many computer applications
of such tournaments, we do not need to trace the history of a winner.
To be more memory efficient, when a winner is promoted, we try to
replace it by something else at a lower level, and the rule becomes
that a cell and the two cells it tops contain three different items,
but the top cell "wins" over the two topped cells.

If this heap invariant is protected at all time, index 0 is clearly
the overall winner.  The simplest algorithmic way to remove it and
find the "next" winner is to move some loser (let's say cell 30 in the
diagram above) into the 0 position, and then percolate this new 0 down
the tree, exchanging values, until the invariant is re-established.
This is clearly logarithmic on the total number of items in the tree.
By iterating over all items, you get an O(n ln n) sort.

A nice feature of this sort is that you can efficiently insert new
items while the sort is going on, provided that the inserted items are
not "better" than the last 0'th element you extracted.  This is
especially useful in simulation contexts, where the tree holds all
incoming events, and the "win" condition means the smallest scheduled
time.  When an event schedule other events for execution, they are
scheduled into the future, so they can easily go into the heap.  So, a
heap is a good structure for implementing schedulers (this is what I
used for my MIDI sequencer :-).

Various structures for implementing schedulers have been extensively
studied, and heaps are good for this, as they are reasonably speedy,
the speed is almost constant, and the worst case is not much different
than the average case.  However, there are other representations which
are more efficient overall, yet the worst cases might be terrible.

Heaps are also very useful in big disk sorts.  You most probably all
know that a big sort implies producing "runs" (which are pre-sorted
sequences, which size is usually related to the amount of CPU memory),
followed by a merging passes for these runs, which merging is often
very cleverly organised[1].  It is very important that the initial
sort produces the longest runs possible.  Tournaments are a good way
to that.  If, using all the memory available to hold a tournament, you
replace and percolate items that happen to fit the current run, you'll
produce runs which are twice the size of the memory for random input,
and much better for input fuzzily ordered.

Moreover, if you output the 0'th item on disk and get an input which
may not fit in the current tournament (because the value "wins" over
the last output value), it cannot fit in the heap, so the size of the
heap decreases.  The freed memory could be cleverly reused immediately
for progressively building a second heap, which grows at exactly the
same rate the first heap is melting.  When the first heap completely
vanishes, you switch heaps and start a new run.  Clever and quite
effective!

In a word, heaps are useful memory structures to know.  I use them in
a few applications, and I think it is good to keep a `heap' module
around. :-)

--------------------
[1] The disk balancing algorithms which are current, nowadays, are
more annoying than clever, and this is a consequence of the seeking
capabilities of the disks.  On devices which cannot seek, like big
tape drives, the story was quite different, and one had to be very
clever to ensure (far in advance) that each tape movement will be the
most effective possible (that is, will best participate at
"progressing" the merge).  Some tapes were even able to read
backwards, and this was also used to avoid the rewinding time.
Believe me, real good tape sorts were quite spectacular to watch!
From all times, sorting has always been a Great Art! :-)
theappushtheappoptheapifytheapreplacetmergetnlargestt	nsmallesttheappushpopi����(tislicetcounttimaptiziptteetchain(t
itemgettercCs$t|d�r||kS||kS(Nt__lt__(thasattr(txty((s/usr/lib/python2.7/heapq.pytcmp_lt�scCs+|j|�t|dt|�d�dS(s4Push item onto heap, maintaining the heap invariant.iiN(tappendt	_siftdowntlen(theaptitem((s/usr/lib/python2.7/heapq.pyR�s
cCs@|j�}|r6|d}||d<t|d�n|}|S(sCPop the smallest item off the heap, maintaining the heap invariant.i(tpopt_siftup(Rtlasteltt
returnitem((s/usr/lib/python2.7/heapq.pyR�s

cCs%|d}||d<t|d�|S(s�Pop and return the current smallest value, and add the new item.

    This is more efficient than heappop() followed by heappush(), and can be
    more appropriate when using a fixed-size heap.  Note that the value
    returned may be larger than item!  That constrains reasonable uses of
    this routine unless written as part of a conditional replacement:

        if item > heap[0]:
            item = heapreplace(heap, item)
    i(R(RRR((s/usr/lib/python2.7/heapq.pyR�s


cCsB|r>t|d|�r>|d|}|d<t|d�n|S(s1Fast version of a heappush followed by a heappop.i(RR(RR((s/usr/lib/python2.7/heapq.pyR�scCs>t|�}x+tt|d��D]}t||�q#WdS(s8Transform list into a heap, in-place, in O(len(x)) time.iN(RtreversedtxrangeR(Rtnti((s/usr/lib/python2.7/heapq.pyR�scCsB|r>t||d�r>|d|}|d<t|d�n|S(s4Maxheap version of a heappush followed by a heappop.i(Rt_siftup_max(RR((s/usr/lib/python2.7/heapq.pyt_heappushpop_max�scCs>t|�}x+tt|d��D]}t||�q#WdS(s;Transform list into a maxheap, in-place, in O(len(x)) time.iN(RRtrangeR!(RRR ((s/usr/lib/python2.7/heapq.pyt_heapify_max�scCs}|dkrgSt|�}tt||��}|s;|St|�t}x|D]}|||�qRW|jdt�|S(sfFind the n largest elements in a dataset.

    Equivalent to:  sorted(iterable, reverse=True)[:n]
    itreverse(titertlistRRRtsorttTrue(Rtiterabletittresultt_heappushpoptelem((s/usr/lib/python2.7/heapq.pyR�s

cCsw|dkrgSt|�}tt||��}|s;|St|�t}x|D]}|||�qRW|j�|S(sYFind the n smallest elements in a dataset.

    Equivalent to:  sorted(iterable)[:n]
    i(R&R'RR$R"R((RR*R+R,R-R.((s/usr/lib/python2.7/heapq.pyR�s


cCsi||}xN||krZ|dd?}||}t||�rV|||<|}q
nPq
W|||<dS(Ni(R(Rtstartpostpostnewitemt	parentpostparent((s/usr/lib/python2.7/heapq.pyR�s


cCs�t|�}|}||}d|d}xi||kr�|d}||krpt||||�rp|}n||||<|}d|d}q-W|||<t|||�dS(Nii(RRR(RR0tendposR/R1tchildpostrightpos((s/usr/lib/python2.7/heapq.pyR's

$	
cCsi||}xN||krZ|dd?}||}t||�rV|||<|}q
nPq
W|||<dS(sMaxheap variant of _siftdowniN(R(RR/R0R1R2R3((s/usr/lib/python2.7/heapq.pyt
_siftdown_max;s


cCs�t|�}|}||}d|d}xi||kr�|d}||krpt||||�rp|}n||||<|}d|d}q-W|||<t|||�dS(sMaxheap variant of _siftupiiN(RRR7(RR0R4R/R1R5R6((s/usr/lib/python2.7/heapq.pyR!Js

$	
(t*cgsFttt}}}t}g}|j}xZttt|��D]C\}}y#|j}	||	�||	g�Wq?|k
r�q?Xq?Wt	|�xu||�dkryAx:|d\}
}}	}|
V|	�|d<|||�q�WWq�|k
r||�q�Xq�W|rB|d\}
}}	|
Vx|	j
D]}
|
Vq0WndS(s�Merge multiple sorted inputs into a single sorted output.

    Similar to sorted(itertools.chain(*iterables)) but returns a generator,
    does not pull the data into memory all at once, and assumes that each of
    the input streams is already sorted (smallest to largest).

    >>> list(merge([1,3,5,7], [0,2,4,8], [5,10,15,20], [], [25]))
    [0, 1, 2, 3, 4, 5, 5, 7, 8, 10, 15, 20, 25]

    iiN(RRt
StopIterationRRt	enumeratetmapR&tnextRt__self__(t	iterablest_heappopt_heapreplacet_StopIterationt_lenthth_appendtitnumR+R<tvts((s/usr/lib/python2.7/heapq.pyRes2	"	



c	CsQ|dkrut|�}tt|d��}|s7gS|dkrYtt||��gStt||�d|�gSyt|�}Wnttfk
r�n!X||kr�t	|d|�| S|dkr�t
|t��}t||�}t
td�|�St|�\}}t
t||�t�|�}t||�}t
td�|�S(sbFind the n smallest elements in a dataset.

    Equivalent to:  sorted(iterable, key=key)[:n]
    itkeyiiN(R&R'RtNonetminR
Rt	TypeErrortAttributeErrortsortedRR	t
_nsmallestR;RRR
(	RR*RHR+theadtsizeR,tin1tin2((s/usr/lib/python2.7/heapq.pyR�s,c	Csc|dkrut|�}tt|d��}|s7gS|dkrYtt||��gStt||�d|�gSyt|�}Wnttfk
r�n'X||kr�t	|d|dt
�| S|dkrt|tdd��}t
||�}ttd�|�St|�\}}tt||�tdd�|�}t
||�}ttd�|�S(soFind the n largest elements in a dataset.

    Equivalent to:  sorted(iterable, key=key, reverse=True)[:n]
    iRHR%ii����iN(R&R'RRItmaxR
RRKRLRMR)RR	t	_nlargestR;RRR
(	RR*RHR+RORPR,RQRR((s/usr/lib/python2.7/heapq.pyR�s,$t__main__iiiii	iiiiiN((t__doc__t	__about__t__all__t	itertoolsRR	R
RRR
toperatorRRRRRRRR"R$RRRRR7R!t_heapqtImportErrorRRNRIRTt__name__RtdataRR(Rtdoctestttestmod(((s/usr/lib/python2.7/heapq.pyt<module>sN`.											5			
	)$%$
	

Youez - 2016 - github.com/yon3zu
LinuXploit